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Abstract 

Background:  Platinum-resistant cases account for 25% of ovarian cancer patients. Our aim was to construct two 
novel prognostic models based on gene expression data respectively from ferroptosis and necroptosis, for predicting 
the prognosis of advanced ovarian cancer patients with platinum treatment.

Methods:  According to the different overall survivals, we screened differentially expressed genes (DEGs) from 85 
ferroptosis-related and 159 necroptosis-related gene expression data in the GSE32062 cohort, to establish two ovarian 
cancer prognostic models based on calculating risk factors of DEGs, and log-rank test was used for statistical signifi-
cance test of survival data. Subsequently, we validated the two models in the GSE26712 cohort and the GSE17260 
cohort. In addition, we took gene enrichment and microenvironment analyses respectively using limma package and 
GSVA software to compare the differences between high- and low-risk ovarian cancer patients.

Results:  We constructed two ovarian cancer prognostic models: a ferroptosis-related model based on eight-gene 
expression signature and a necroptosis-related model based on ten-gene expression signature. The two models per-
formed well in the GSE26712 cohort, but the performance of necroptosis-related model was not well in the GSE17260 
cohort. Gene enrichment and microenvironment analyses indicated that the main differences between high- and 
low- risk ovarian cancer patients occurred in the immune-related indexes, including the specific immune cells abun-
dance and overall immune indexes.

Conclusion:  In this study, ovarian cancer prognostic models based on ferroptosis and necroptosis have been 
preliminarily validated in predicting prognosis of advanced patients treated with platinum drugs. And the risk score 
calculated by these two models reflected immune microenvironment. Future work is needed to find out other gene 
signatures and clinical characteristics to affect the accuracy and applicability of the two ovarian cancer prognostic 
models.
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Background
Ovarian cancer is a gynecological malignancy with the 
highest mortality, and ranks the fifth leading cause of 
cancer-related death in the USA [1]. In the USA, Ovar-
ian cancer accounts for 2.38% of all female malignancies 
and 4.89% of all female cancer deaths, and the 5-year rel-
ative survival is only 48.6% [2]. The main reason for the 
high mortality rate from ovarian cancer is 75% of cases 
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are already at advanced stage when diagnosed [3]. But 
early detection of ovarian cancer is difficult due to the 
insidious onset, including elvictor abdominal pain, early 
satiety, urinary frequency, constipation and abdominal 
distension [4]. Similar to other cancers, metastatic dis-
ease is the main cause to ovarian cancer related deaths 
[5]. In ovarian cancer, platinum–taxanes combina-
tion chemotherapy is a regular treatment after surgical 
cytoreduction [6]. However, most patients eventually 
relapse due to the strong drug resistance, especially for 
platinum drugs [7].

Drug resistance is a major problem in cancer treat-
ment, leading to cell tolerance and failure in response 
to one or multiple agents. Since 25% of ovarian cancer 
patients are typically platinum resistant [8], it is neces-
sary to predict platinum efficacy to each patient before 
chemotherapy. According to the previous studies, plati-
num resistance involved many biological processes in 
ovarian cancer, including altered drug metabolism, role 
of membrane transporters, dysregulation of cellular 
metabolism, cell death inhibition, DNA damage repair, 
long non-coding RNAs, epigenetics, oxidative stress [9]. 
Among them, cell death inhibition is the final reason to 
make the ovarian cancer cell resistant to platinum [10]. 
Therefore, identification of ovarian cancer related factors 
in cell death pathways is an effective way to predict the 
prognosis after platinum drug.

As the main cell death type, apoptosis has been well 
studied in ovarian cancer, but the major drug resistance is 
apoptosis resistance [11]. Ferroptosis and necroptosis are 
two newly discovered types of regulated necrosis, and a 
growing number of anti-cancer drugs have been reported 
to function as the activators of ferroptosis or necroptosis 
[12–14]. Ferroptosis is an iron-catalyzed form of regu-
lated necrosis that functions through excessive peroxida-
tion, recent studies have found that iron ptosis plays an 
important role in the occurrence and development of 
ovarian cancer [15]. Necroptosis is defined as a regu-
lated necrosis type that requires the receptor interacting 
protein kinase 3 (RIPK3) and mixed lineage kinase like 
(MLKL), and is induced by death-related receptors, sen-
sors and other mediators. It has been proved that both 
ferroptosis and necroptosis play important roles in can-
cer cells, especially in drug resistance [16, 17]. In ovar-
ian cancer stem-like cells necroptosis was found driven 
by ALDH1A family selective inhibitors, which were 
broadly linked with resistance to chemotherapeutics such 
as paclitaxel and doxorubicin [18]. However, the relation-
ship between ferroptosis- and necroptosis-related genes 
and prognosis of ovarian cancer patients is still vastly 
unknown, making it still a challenge for predicting prog-
nosis of chemotherapy and developing novel therapies 
for ovarian cancer. Therefore, identifying cancer-related 

genes in ferroptosis and necroptosis is a promising way 
to predict prognosis of ovarian cancer patients using 
platinum drugs.

In this study, we established two prognostic models 
in ovarian cancer, involving ferroptosis and necroptosis 
respectively, based on the expression data from ovar-
ian cancer patients with platinum drug in the GSE32062 
cohort. Both two models were validated in the GSE26712 
cohort, but the necroptosis-related model performed 
inappropriately in the GSE17260 cohort. Finally, we 
performed functional enrichment analysis and tumor 
microenvironment analysis to explore the molecular 
mechanisms that may influence the prognosis of ovar-
ian cancer. Taken together, ferroptosis and necroptosis 
are two important pathways related to ovarian cancer 
prognosis, which can be used to build the prognostic pre-
diction models under specific genetic backgrounds and 
platinum drug therapy.

Materials and methods
Data collection
The GSE32062 cohort, the GSE26712 cohort 
and the GSE17260 cohort
The ovarian cancer expression data and clinical data 
of GSE32062 cohort [19], GSE26712 cohort [20] and 
GSE17260 cohort [21] were downloaded from gene 
omnibus expression (GEO) database (https://​www.​ncbi.​
nlm.​nih.​gov/​gds/). The expression data of GSE32062 
cohort, GSE26712 cohort and GSE17260 cohort were 
produced from agilent whole human genome oligo 
microarray, affymetrix human genome U133A array, and 
Agilent-014850 whole human genome microarray 4x44K 
G4112F, respectively. In GSE32062 cohort, 10 cases were 
excluded due to the different platform, and the other 
260 ovarian cancer patients with platinum drugs were 
included. In the GSE26712 cohort, all 185 late-stage (III/
IV) ovarian cancer patients with platinum drugs were 
included as validation group 1. In GSE17260 cohort, 110 
stage III/IV serious ovarian cancer patients who under-
went platinum chemotherapy were included as validation 
group 2.

Gene set
The ferroptosis-related gene set including 60 genes from 
references [22] and 41 genes from ferroptosis-related 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway, among which 16 genes overlap and finally a 
total of 85 genes were included. All of 159 genes from 
necroptosis-related literatures and KEGG pathway were 
included as the necroptosis-related gene set in this study 
[23–25].

https://www.ncbi.nlm.nih.gov/gds/
https://www.ncbi.nlm.nih.gov/gds/
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Construction and validation prognostic models
Based on overall survival (OS), univariate and mul-
tivariate Cox regression analysis were used to screen 
prognosis-related genes respectively from ferroptosis-
related gene set and necroptosis-related gene set. P 
value < 0.1 was the threshold for the entry from single 
factor into multivariate analysis, and stepwise regres-
sion was used for gene screening in multifactor analy-
sis. The risk scores were calculated according to the 
normalized expression level of each screened gene 
and its corresponding regression coefficients. Patients 
were divided into high and low risk groups based on 
the median value of the risk score. Survival (version: 
3.2–3) package and SurvMiner (version: 0.4.8) package 
were used for drawing survival curve, and log-rank test 
method was used for statistical significance test of sur-
vival data.

Enrichment analysis
Differentially expressed genes (DEGs) were screened 
between high and low risk groups by limma package, 
and the screening threshold was |log2FC| > 2 and P value 
< 0.05. The screened DEGs were enriched in gene ontol-
ogy (GO) and KEGG pathways by DAVID (https://​david.​
ncifc​rf.​gov/).

Immune microenvironment analysis
Relative abundance of each immune cell was calcu-
lated by GSVA (version: 1.32.0) package. Immune 
infiltration related indexes were calculated by ESTI-
MATE, including immune score, stromal score and 
ESTIMATE score. Correlation analysis between 
immune-related indexes and ferroptosis/necropto-
sis-related genes was conducted using psych (ver-
sion: 2.0.8) package and drawn by corrplot (version: 
0.84) package. Differential immune indexes between 
high and low risk groups were analyzed and drawn 
using stats (version: 3.6.2) package and ggpubr (ver-
sion: 0.4.0) package.

Statistical analysis
Student’s t-test was used to compare gene expression 
and immune related indexes between high and low risk 
groups. Log-rank test was used to compare OS between 
different groups by Kaplan-Meier analysis. Univariate 
and multivariate Cox regression analyses were applied 
using survival (version: 3.2–3) and glmnet (version: 
4.0–2) packages in R, P < 0.1 was the threshold. All sta-
tistical analyses were conducted in R software. All P 
values were two-tailed, and less than 0.05 was consid-
ered statistically significant.

Results
The work flow of this study is shown in Fig. 1. First, a 
total of 260 stage III/IV ovarian cancer patients with 
platinum treatment from GSE32062 were enrolled to 
construct a Cox model to predict the prognosis. Sec-
ond, a total of 185 and 110 stage III/IV ovarian cancer 
patients with platinum treatment respectively from 
GSE26712 and GSE17260 were used as the validation 
group (validation group 1 and 2) to verify the models. 
The basic clinical characteristics of enrolled patients 
are listed in Table 1.

Identification of the prognostic ferroptosis‑related 
and necroptosis‑related genes in the GSE32062 cohort
A total of 85 ferroptosis-related genes and a total of 159 
necroptosis-related genes were used to analyze the rela-
tionship with prognosis of ovarian cancer patients in 
the GSE32062 cohort, respectively. Based on the expres-
sion profile, through the univariate and multivariate 
Cox regression analyses with OS, eight DEGs related 
to ferroptosis were finally identified closely related to 
OS, including NFS1, ATG7, G6PD, VDAC2, SLC3A2, 
MAP1LC3C, ACSL3, and PTGS2 (Fig.  2a). Through 
the same method, we screened 10 necroptosis-related 
DEGs associated with OS of ovarian cancer patients, 
namely STAT5B, CAMK2D, HIST1H2AJ, CASP1, 
PYGB, IFNAR2, CAMK2G, STAT1, FADD, and HMGB1 
(Fig.  2b). The functions and ovarian cancer-related 
research of these genes are listed in Supplementary 
Table S1.

Construction of four ferroptosis‑related 
and necroptosis‑related prognostic models 
in the GSE32062 cohort
Based on the identified DEGs, we constructed two prog-
nostic models for ovarian cancer through Cox regres-
sion analyses. The risk score was calculated by the DEGs 
(n(ferroptosis) = 8, n(necroptosis) = 10), and the Yoden index 
was used to calculate the best cutoff value to divide the 
enrolled ovarian cancer patients into high and low risk 
groups (Fig.  2c, d). The characteristics of two models 
were described as follows.

Ferroptosis‑related prognostic model
We used eight screened DEGs to construct the ferropto-
sis-related prognostic model with OS. The OS of ovar-
ian cancer patients prolonged with the high-expression 
of ATG7, G6PD, SLC3A2, MAP1LC3C and PTGS2, but 
shrank with the increased expression of NFS1, VDAC2, 
ACSL3 (Fig. 2a). According to the best cutoff value of risk 
score, we divided 260 enrolled ovarian cancer patients 
into high-risk group (n = 116) and low-risk group 

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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(n = 144), shown in Fig.  2c. Survival analysis showed 
that the OS of high-risk group was significantly shorter 
than low-risk group (P < 0.0001; Fig.  3a). The risk score 
for OS was calculated by the predictive performance of 
the eight-gene receiver operating characteristic (ROC) 
curves. The area under the curve (AUC) reached 0.632 

of 3-year survival, 0.683 of 5-year survival, and 0.681 of 
10-year survival (Fig. 3b).

Necroptosis‑related prognostic model
To build the necroptosis-related OS prognostic model, 
we used ten selected DEGs of STAT5B, CAMK2D, 

Fig. 1  Flow chart of data collection

Table 1  Clinical characteristics of patients.

OS overall survival, SD standard deviation

Cohort GSE32062 GSE26712 GSE17260

Total number 260 185 110

Age (mean ± SD) 58.2 ± 10.8 62 ± 12 59 ± 12.6

Histology Serous 260 (100%) 166 (89.73%) 110 (100%)

Others 0 19 (10.27%) 0

Stage Stage I 0 0 0

Stage II 0 0 0

Stage III 204 (78.46%) 144 (77.84%) 93 (84.55%)

Stage IV 56 (21.54%) 41 (22.16%) 17 (15.45%)

Grade Grade 1 0 0 26 (23.64%)

Grade 2 131 (50.38%) 40 (21.62%) 41 (37.27%)

Grade 3 129 (49.62%) 144 (77.84%) 43 (39.09%)

Grade 4 0 1 (0.54%) 0

Treatment Platinum 260 (100%) 185 (100%) 110 (100%)

Taxane 260 (100%) 185 (100%) 110 (100%)

OS (median (interquartiles)) 41.5 (1128)
months

3.19 (0.06,13.65)
years

30.5 (1,81)
months
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Fig. 2  Prognostic models for ovarian cancer constructed in GSE32062. a Hazard ratio of genes included in the ferroptosis-related prognostic model. 
b Hazard ratio of genes included in the necroptosis-related prognostic model. c Heatmap of gene expression in the ferroptosis-related prognostic 
model. d Heatmap of gene expression in the necroptosis-related prognostic model
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HIST1H2AJ, CASP1, PYGB, IFNAR2, CAMK2G, 
STAT1, FADD and HMGB1.The DEGs of STAT5B, 
CAMK2D, HIST1H2AJ, IFNAR2, STAT1 and FADD 
were identified as six protective factors to this model, 
and CASP1, PYGB, CAMK2G, and HMGB1 were iden-
tified as four risk factors (Fig.  2b). Survival analysis 

also showed a low-risk group was much longer than 
high-risk group in OS (P < 0.0001; Fig.  3c). The AUC 
of the ten-gene ROC curves reached 0.660 of 3-year 
survival, 0.728 of 5-year survival, and 0.719 of 10-year 
survival (Fig. 3d).

Fig. 3  Prognostic analysis of the two models in the GSE32062 cohort. Survival curve (a) and ROC curves of 3, 5, 10 year survival (b) of high and low 
risk groups in the ferroptosis-related prognostic model in the GSE32062 cohort. Survival curve (c) and ROC curves of 3, 5, 10 year survival (d) of high 
and low risk groups in the necroptosis-related prognostic model in the GSE32062 cohort
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Validation of the prognostic models in the GSE26712 
cohort
Here, we used GSE26712 cohort to validate the ferrop-
tosis-related and necroptosis-related prognostic mod-
els with OS. The AUC of ferroptosis-related ROC was 
0.584 of 3-year survival, 0.600 of 5-year survival, 0.663 of 

10-year survival (Fig. 4b). And the AUC of necroptosis-
related ROC was 0.634 of 3-year survival, 0.624 of 5-year 
survival, 0.580 of 10-year survival (Fig. 4d).

Following the same formula of risk score from 
GSE32062 cohort, we calculated risk score of each 
patient enrolled from the GSE26712 cohort. According 

Fig. 4  Performance of the two models in the GSE26712 cohort. Survival curve (a) and ROC curves (b) of high and low risk groups in the 
ferroptosis-related prognostic model in the GSE26712 cohort. Survival curve (c) and ROC curves (d) of high and low risk groups in the 
necroptosis-related prognostic model in the GSE26712 cohort



Page 8 of 13Li et al. BMC Cancer           (2022) 22:74 

to the risk scores, the GSE26712 cohort were divided 
into high-risk group and low-risk group. The OS of 
high-risk group was significantly shorter than low-
risk group in ferroptosis-related prognostic model 
(P = 0.0085; Fig.  4a), and the similar result was also 
shown in necroptosis-related prognostic model 
(P = 0.0049; Fig.  4c). Therefore, the ferroptosis- and 
the necroptosis-related prognostic models with OS 

for ovarian cancer also worked well in the GSE26712 
cohort.

Validation of the prognostic models in the GSE17260 
cohort
To ensure the robustness of the two models in our study, 
a total of 110 ovarian cancer patients from the GSE17260 
cohort were enrolled for further validation. The patients 
were clustered into high-risk group and low-risk group 

Fig. 5  Performance of the two models in the GSE17260 cohort. Survival curve (a) and ROC curves (b) of high and low risk groups in the 
ferroptosis-related prognostic model in the GSE17260 cohort. Survival curve (c) and ROC curves (d) of high and low risk groups in the 
necroptosis-related prognostic model in the GSE17260 cohort
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following the same way used in the GSE32062 cohort. 
The AUC of 3-, 5- and 10-year survival were 0.573, 0.588 
and 0.594 in ferroptosis-related ROC (Fig. 5b), and 0.559, 
0.595, 0.610 respectively in necroptosis-related ROC 
(Fig.  5d). Meanwhile, the survival curve showed sig-
nificant differences between high and low risk groups 
in ferroptosis-related model (P = 0.015; Fig.  5a), but no 
statistical significance in the necroptosis-related model 
(P = 0.072; Fig. 5c). The results revealed that the ferropto-
sis-related prognostic model with OS for ovarian cancer 
worked well in the GSE17260 cohort, but the necrop-
tosis-related model should be further optimized in the 
future.

Functional enrichment analysis in the GSE32062 cohort
To explore the biological functions and regulatory path-
ways related to the prognostic models, we selected the 
DEGs between the high-risk group and low-risk group 
to conduct GO and KEGG analyses. Interestingly, many 
immune related functions and pathways were enriched 
in both ferroptosis-related and necroptosis-related risk 
models (Fig. 6a, d).

In the ferroptosis-related prognostic model, 10 
immune-related GO terms were significantly enriched 
in (P < 0.05), including five biological processes (BPs) of 
immune response, humoral immune response, innate 
immune response, chemokine-mediated signaling path-
way, positive regulation of NF-κB transcription factor 
activity; and five immune-related molecular functions 
(MFs) of chemokine activity, cytokine activity, Toll-like 
receptor 4 binding, CCR chemokine receptor binding 
and CXCR chemokine receptor binding (Fig. 6b). Besides, 
six immune-related KEGG pathways were also enriched 
in the ferroptosis-related prognostic model, including 
cytokine-cytokine receptor interaction, chemokine sign-
aling pathway, TNF signaling pathway, NF-kappa B sign-
aling pathway, NOD-like receptor signaling pathway and 
Toll-like receptor signaling pathway (Fig. 6c).

In the necroptosis-related prognostic model, two immune-
related BPs were enriched, including chemokine-mediated 
signaling pathway and immune response; three immune-
related MFs were enriched, including chemokine activity, 
CCR chemokine receptor binding and CXCR3 chemokine 
receptor binding; two immune-related KEGG pathways 
were enriched, including chemokine signaling pathway and 
cytokine-cytokine receptor interaction (Fig. 6e, f).

Microenvironment analysis in the GSE32062 cohort
According to the functional enrichment analysis, 
immune-related factors were identified as key elements 
to ovarian cancer patients in the GSE32062 cohort. 
To comprehensively analyze the importance of the 

immune-related factors in the two above prognostic 
models, 45 immune-related indexes calculated from the 
gene expression data were included.

In the ferroptosis-related prognostic model, 43 of the 45 
immune-related factors had significant relationship with 
risk score, and plasma cell and mDC were the two excep-
tions. As expected, almost all the immune-related factors 
had negative relationships with risk scores, except acti-
vated CD4 and activated CD8 (Fig. 7a). For the 10 DEGs 
enrolled in the ferroptosis-related prognostic model, we 
comprehensively analyzed the correlation between each 
DEG expression and immune-related factors. NFS1, 
ATG7, VDAC2 and PTGS2 were four genes associated 
with more than five factors. NFS1 and VDAC2 were two 
DEGs that were negatively associated with immune-
related factors, involving 9 and 5 factors, respectively. 
ATG7 and PTGS2 were positively associated with 13 and 
21 immune-related factors, respectively (Fig. 7b).

In the necroptosis-related prognostic model, 35 of 
45 immune-related factors had significant relationship 
with risk score, and all of them showed positive cor-
relation (P < 0.05; Fig. 7a). For the 12 DEGs enrolled in 
this model, except CAMK2D-NK56 dim and IFMAR2-
activated CD8, all the significant relationships between 
each gene and factors were positive. For the correlation 
analysis of each DEG with immune-related factors, five 
DEGs were associated with more than 30 immune-
related factors, including CASP1, IFNAR2, STAT1, 
CYLD and STAT2. Among them, CASP1 was a DEG 
most associated with immune-related factors, involv-
ing 40 factors. On the contrary, five DEGs were associ-
ated with less than 2 immune-related factors, including 
HIST1H2AJ, PYGB, CAMK2G, FADD and HMGB1. 
CAMK2G was a DEG associated with none of the 45 
immune-related factors (Fig. 7c).

Discussion
In this study, we constructed two ovarian cancer prog-
nostic models based on the GSE32062 cohort, related to 
ferroptosis and necroptosis, respectively. The ferroptosis-
related prognostic model performed well in both of the 
two validation groups, but the necroptosis-related model 
was validated in only one cohort (Figs. 4, 5). Both func-
tional analysis and microenvironment analysis showed 
that immune-related factors had the close relationship 
with the risk score in the two prognostic models.

Although the current standard treatment is primary 
surgery followed by platinum-based chemotherapy, there 
is still a significant proportion of patients with platinum-
resistant ovarian cancer [26]. Recent studies reported 
that ferroptosis and necroptosis are two important path-
ways to affect the efficacy of platinum drugs [12–14], 
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which may further affect the prognosis of ovarian cancer 
patients treated with platinum drugs. In this study, we 
established two ovarian cancer prognostic models based 

on gene expression data respectively of ferroptosis and 
necroptosis pathways, and these two prognostic models 
performed well in both the modeling cohort of GSE32062 

Fig. 6  Functional analysis in the GSE32062 cohort. In the ferroptosis-related prognostic model: a: DEGs between high- and low-risk groups. b: GO 
analysis. c: KEGG analysis. In the necroptosis-related prognostic model: d: DEGs between high- and low-risk groups. e: GO analysis. f: KEGG analysis
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and the validation cohort of GSE26712 (Figs.  3, 4), and 
the ferroptosis-related model performed well in the 
GSE17260 cohort (Fig. 5a-b).

Besides, although the necroptosis-related prognostic 
model cannot be applied in the GSE17260 cohort, the 
survival probability after 36 months were obviously dif-
ferent between high and low risk groups (Fig. 5c). These 
results suggested that some clinical indicators, as well as 
expression levels of genes apart from the gene set used 
in this study, need to be taken into consideration. Stud-
ies have found that some clinical characteristics, such as 
age, performance status, FIGO stage, residual disease, 
histology, and BRCA/HRD, are the potential prognostic 
factors of ovarian cancer [27–29]. The model constructed 
by neglecting these factors may not be suitable for some 

patients. However, due to the use of common data from 
GEO database, these cases lack many clinical indicators 
and cannot be used for multivariate analysis, which is 
also a shortcoming of this study. The models should be 
further optimized based on prospective clinical study to 
improve their clinical usefulness.

As immune infiltrate in the microenvironment plays a 
key role in ovarian cancer development [30], combined 
with the enrichment results of many immune-related 
genes in the current study, we conducted a comprehensive 
correlation analysis to find out which immune cells were 
involved in the two prognostic models. The risk scores of 
the two ovarian cancer prognostic models had the nega-
tive correlation with ESTIMATE score, immune score 
and stromal score, as well as with the relative abundance 

Fig. 7  Microenvironment analysis in the GSE32062 cohort. a: Comparison between the high- and low-risk groups in the immune-related indexes 
of the two models. Blue: the value of the high-risk group is higher than the low-risk group; Orange: the value of the high-risk group is lower than 
the low-risk group. b: Correlation analysis between gene expression and immune-related indexes in the ferroptosis-related prognostic model. c: 
Correlation analysis between gene expression and immune-related indexes in the necroptosis-related prognostic model. *: P < 0.05; **: P < 0.01; ***: 
P < 0.001
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of most immune cells (Fig.  7a). Among them, activated 
CD4 and activated CD8 were only two types of immune 
cells that could promote the ovarian cancer progress in the 
ferroptosis-related pathway, and similar results were also 
reported in the previous studies [31, 32]. However, in the 
necroptosis-based prognostic model, all involved immune-
related indexes in this study showed a negative relationship 
with risk scores. These results indicated that the abundance 
of activated CD4 and activated CD8 could be used as a key 
biomarker to distinguish whether ferroptosis or necropto-
sis plays a dominant role in an ovarian cancer patient.

Although we display a series of significant results, 
there are still some limitations in this study. First, the 
included genes of ferroptosis and necroptosis in this 
study are mainly based on previous studies, so that some 
unreported related genes may be ignored and excluded. 
This problem would reduce the accuracy and applicabil-
ity of the prognostic models. Second, the lack of clinical 
information to build the prognostic models may miss by 
key prognostic factors. Third, the two prognostic mod-
els constructed for ovarian cancer patients in this study 
need to verification in the clinical practice. According to 
the above, future work will focus on the two points: (1) 
Screening novel genes related to ferroptosis and necrop-
tosis in more cohorts; (2) Collecting adequate ovarian 
cancer cases and clinical information to validate and 
optimize the two prognostic models, and compare them 
with the clinical gold standard, so as to make sure that 
the prognosis models are useful for clinical practice.

Conclusions
In conclusion, based on ferroptosis and necroptosis, our 
study constructed two ovarian cancer prognostic mod-
els for predicting the prognosis of advanced ovarian 
cancer patients treated with platinum drugs. The two 
models proved closely related to tumor immunity. Fur-
ther studies are needed to optimize the two models by 
enrolling in other related genes and clinical information.
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